
Paul de Metter, Lennard Fonteijn
11th April 2017



Paul de Metter
Founder Arlanet, Chieftain

Lennard Fonteijn
.NET Wizard, Lecturer

All copyrighted material has been stripped from this presentation for publishing reasons.



• We built all our solutions on designs
• We built all our solutions on templates
• We built all our solutions using content trees
• Life was simple and easy...



It is not about design anymore.

It is about functionality and user experience.



It is not about templates anymore.

It is about flexibility.



It is not about content trees anymore.

It is about content models.



• Start with creating a functional wireframe using 
our Bootstrap Generator

• This focusses the customer on functionality and 
user experience before design



• Continue to define the content model and 
separate content from presentation

• This enables the editors to think about content
and Umbraco about the presentation



• Finalize the design process with a visual design 
that builds on the wireframe, UX and content 
model

• This focusses the customer to look at visual 
design instead of functionality and UX





1. Download latest Umbraco.zip and extract to a Visual 
Studio 2010 project

2. Setup Umbraco, create DocumentTypes, 
MasterPages, XSLT and Macros

3. … maybe throw in a custom ASPX control or XSLT 
library

4. Prepare the content and media tree
5. Test, accept and release



1. Install Umbraco with NuGet in a
Visual Studio 2015 (or 2017) project

2. Think about your content for a moment…
3. Setup Umbraco, create DocumentTypes

and Razor views
4. Add lots of controllers and other custom logic
5. Test, accept and release



Development has shifted from Frontend to Backend

(Which our frontender doesn’t like, by the way)



• Content really defines the way you work
– DocumentTypes Composition over Inheritance
– Content Maintainability and Reusability over Usability

• Lots of custom logic
– Thanks to Umbraco gradually opening up more

with every release



• Mixing old and new habits
• Reinventing the wheel
• Over-engineering solutions
• Ignorance



• What?
– Using macros for everything

• Why is that bad?
– Macros add a lot of unnecessary overhead
– Razor introduced Partial Views

• When to use?
– Only when content requires user-defined controls



• What?
– Adding your own cache layer

• Why is that bad?
– Umbraco comes with 3 types of caches out of the box

• RuntimeCache
• RequestCache
• StaticCache

• When to use?
– A SessionCache-variant is not

part of the deal
• Implement your own ICacheProvider
• Be aware of load balancing though!



• What?
– Adding your own ORM into the mix, eg. EntityFramework.

• Why is that bad?
– Umbraco comes with PetaPoco, which is well suit for most purposes.
– Umbraco also has support for Migrations

• Checkout MigrationBase

• When to use?
– Only when you really want that one feature…
– ORM talks to a different database than Umbraco.
– But… It still sucks, ORM references and Bin



• What?
– Trying to abstract Umbraco too much

• Why is that bad?
– One size fits all is a myth
– Embrace what Umbraco has to offer
– KISS

• When to use?
– Only to support development up to a certain level

• Inversion of Control, eg. Dependency Injection to increase Testability



• What?
– Searching through the content-tree every request

• Why is that bad?
– The Umbraco XML cache is really slow and eats memory

• It works fine for a few nodes, but not if you have 1k+

• What to use?
– Use references properties in the root-node(s)

• Cache these references
• Load a reference with Umbraco.TypedContent

– Do not use Umbraco.Content

– Use the Examine index inside Umbraco…
– … or write your own (Lucene) indexer



• What?
– Keeping track of metadata in content-nodes

• Why is that bad?
– Everytime a save is triggered, a new version is stored
– Umbraco cannot handle lots of versions well

• This is due to the diffing algorithm that runs for every publish

• When to use?
– Never, use a PetaPoco instead



• What?
– Using custom HttpModules to do UrlRewriting to nodes

• Why is that bad?
– Rewriting has to occur before UmbracoModule kicks in…

• But that’s problemetic when you need UmbracoContext
– Umbraco offers UrlRewriting out of the box*
– You can implement your own IContentFinder
– Do both to complement eachother

• When to use?
– When you don’t need UmbracoContext and logic surpassing that of simple rewrite rules

* This will be removed in Umbraco 7.6, so instead you can use the IIS Rewrite Module. 
OWIN would still require your own module.



• Don’t be afraid to learn new tricks
– They can be lifesavers

• Embrace what Umbraco offers out of the box
– Prevent reinventing the wheel
– Unlikely to break any time soo

• Refrain from using “hacks” based on assumptions
– “Assumption is the mother of all fuckups.”



• Separate content and data
– Define context-free
– DocumentTypes for data
– Create them under a Content-tree without bindings



• Relational Data
– Create bidirectional relations between data-objects

• A doctor does a particular treatment
• A particular treatment knows which doctors perform it

– Content-editors don’t have to create the same relation both 
ways

– Data can be presented any way you like



• Custom Lucene Indexers
– Small specific indexes over

uber-indexes
– Speed up specific slow portions of your site, eg. Blog-posts
– ArlaSearch


